3,531 research outputs found

    Disorder and fluctuations in nonlinear excitations in DNA

    Get PDF
    We study the effects of the sequence on the propagation of nonlinear excitations in simple models of DNA, and how those effects are modified by noise. Starting from previous results on soliton dynamics on lattices defined by aperiodic potentials, [F. Dom\'\i nguez-Adame {\em et al.}, Phys. Rev. E {\bf 52}, 2183 (1995)], we analyze the behavior of lattices built from real DNA sequences obtained from human genome data. We confirm the existence of threshold forces, already found in Fibonacci sequences, and of stop positions highly dependent on the specific sequence. Another relevant conclusion is that the effective potential, a collective coordinate formalism introduced by Salerno and Kivshar [Phys. Lett. A {\bf 193}, 263 (1994)] is a useful tool to identify key regions that control the behaviour of a larger sequence. We then study how the fluctuations can assist the propagation process by helping the excitations to escape the stop positions. Our conclusions point out to improvements of the model which look promising to describe mechanical denaturation of DNA. Finally, we also consider how randomly distributed energy focus on the chain as a function of the sequence.Comment: 14 pages, final version, accepted in Fluctuation and Noise Letters, scheduled to apper in vol. 4, issue 3 (2004

    External fluctuations in front dynamics with inertia: The overdamped limit

    Get PDF
    We study the dynamics of fronts when both inertial effects and external fluctuations are taken into account. Stochastic fluctuations are introduced as multiplicative noise arising from a control parameter of the system. Contrary to the non-inertial (overdamped) case, we find that important features of the system, such as the velocity selection picture, are not modified by the noise. We then compute the overdamped limit of the underdamped dynamics in a more careful way, finding that it does not exhibit any effect of noise either. Our result poses the question as to whether or not external noise sources can be measured in physical systems of this kind.Comment: 4 pages, 1 figure, accepted for publication in European Physical Journal

    ac driven sine-Gordon solitons: dynamics and stability

    Get PDF
    The ac driven sine-Gordon equation is studied analytically and numerically, with the aim of providing a full description of how soliton solutions behave. To date, there is much controversy about when ac driven dc motion is possible. Our work shows that kink solitons exhibit dc or oscillatory motion depending on the relation between their initial velocity and the force parameters. Such motion is proven to be impossible in the presence of damping terms. For breathers, the force amplitude range for which they exist when dissipation is absent is found. All the analytical results are compared with numerical simulations, which in addition exhibit no dc motion at all for breathers, and an excellent agreement is found. In the conclusion, the generality of our results and connections to others systems for which a similar phenomenology may arise are discussed.Comment: 10 pages, latex, PostScript figures included with epsfig, to appear in European Physical Journal B, see GISC homepage at http://valbuena.fis.ucm.es/ for related wor

    General non-existence theorem for phase transitions in one-dimensional systems with short range interactions, and physical examples of such transitions

    Get PDF
    We examine critically the issue of phase transitions in one-dimensional systems with short range interactions. We begin by reviewing in detail the most famous non-existence result, namely van Hove's theorem, emphasizing its hypothesis and subsequently its limited range of applicability. To further underscore this point, we present several examples of one-dimensional short ranged models that exhibit true, thermodynamic phase transitions, with increasing level of complexity and closeness to reality. Thus having made clear the necessity for a result broader than van Hove's theorem, we set out to prove such a general non-existence theorem, widening largely the class of models known to be free of phase transitions. The theorem is presented from a rigorous mathematical point of view although examples of the framework corresponding to usual physical systems are given along the way. We close the paper with a discussion in more physical terms of the implications of this non-existence theorem.Comment: Short comment on possible generalization to wider classes of systems added; accepted for publication in Journal of Statistical Physic

    Massive star formation in Wolf-Rayet galaxies. IV: Colours, chemical composition analysis and metallicity-luminosity relations

    Full text link
    (Abridged) We performed a multiwavelength analysis of a sample of starburst galaxies that show the presence of a substantial population of very young massive (WR) stars. Here we present the global analysis of the derived photometric and chemical properties. We compare optical/NIR colours and the physical properties (reddening coefficient, equivalent widths of the emission and underlying absorption lines, ionization degree, electron density, and electron temperature) and chemical properties with previous observations and galaxy evolution models. Attending to their absolute B-magnitude many of them are not dwarf galaxies, but they should be during their quiescent phase. We found that both C(Hb) and Wabs increase with increasing metallicity. We detected a high N/O ratio in objects showing strong WR features. The ejecta of the WR stars may be the origin of the N enrichment in these galaxies. We compared the abundances provided by the direct method with those obtained using empirical calibrations, finding that (i) the Pilyugin method is the best suitable empirical calibration, (ii) the relations between the oxygen abundance and the N2 or the O3N2 parameters provided by Pettini & Pagel (2004) give acceptable results for objects with 12+log(O/H)>8.0, and (iii) the results provided by empirical calibrations based on photoionization models are systematically 0.2-0.3 dex higher than the values derived from the direct method. The O and N abundances and the N/O ratios are related to the optical/NIR luminosity; the dispersion is consequence of the differences in the star-formation histories. Galaxies with redder colours tend to have higher oxygen and nitrogen abundances. Our detailed analysis is fundamental to understand the nature of galaxies showing strong starbursts, as well as to know their star formation history and the relationships with the environment.Comment: 30 pages, 22 figures, accepted to A&A. Updated with the final version

    Quasi-Ballistic Electron Transport in Random Superlattices

    Get PDF
    We theoretically study electron transport in disordered, quantum-well based, semiconductor superlattices with structural short-range correlations. Our system consists of equal width square barriers and quantum wells with two different thicknesses. The two kinds of quantum wells are randomly distributed along the growth direction. Structural correlations are introduced by adding the constraint that one of the wells always appears in pairs. We show that such correlated disordered superlattices exhibit a strong enhancement of their dc conductance as compared to usual random ones, giving rise to quasi-ballistic electron transport. Our predictions can be used to demonstrate experimentally that structural correlations inhibit the localization effects of disorder. We specifically describe the way superlattices should be built and experiments should be carried out for that purpose.Comment: REVTeX 3.0, 7 pages, 4 figures on request from FD-A ([email protected]). Submitted to Physical Review B. Preprint MA/UC3M/12/199
    • …
    corecore